
opualingfingsystems
UNIT - 1

INTRODUCTION 4

PROCESS MANAGEMENT

feedback1correctionsivibha@pesu.pes.edu VIBHA MASTI

OPIRAIGSYS :'T
l N T R O D U C T l O N

NEED for OS
• Access hardware interfaces

. Manage multiple processes
• Storage management, files
• Protection and security

Definition user

• Intermediary between user and hardware t
° User-friendly application
° resource allocator

,
control program I

° Compromise b/w usability and utilisation

of
computer components - Top Level View hardware

° Processor

. Memory
° 1/0 modules
° System Bus

CPU Main memory

system o

PC MAR
C Bus

! L PC : prog counter

instruction IR : instruction registerinstruction

IR MBR instruction MAR: memory address

110 AR ! register
Execution yo BR

7 data
MBR : memory buffer

data

data register
110 Module i n- z yo AR : input-output

" '

address register
110 BR: input) output(

buffer register
Buffers

COMPUTER SYSTEM ORGANISATION

. cpucs) and device controllers have access to shared memory
via a common bus

• CPUs) and data controllers compete for memory cycles and can run

concurrently

° Memory controller is provided to synchronise access to memory

disks mouse keyboard printer monitor

CPU disk USB controller graphics 1/0 devices
controller adapter

memory

computer system operation

• 1/0 devices
,
CPU execute concurrently

° Each device controller in charge of particular device type and has

local memory

° Device controller has registers for each action (keyboard input)

• CPU loads data from main memory to local buffer

° Device controller sends interrupt to CPU when task is completed

Bootstrap

° When system is booted
,
first program to be executed is Bootstrap,

which is stored on ROM or EEPROM

° Also referred to as firmware

° Initial ises all aspects of system (CPU registers , device controllers ,
main memory etc)

• Load OS kernel onto memory

° After booting , first program that is created is init; waits for

event to occur
↳
interrupt

Interrupt

• Transfers control to the interrupt service routine (ISR) through the

interrupt vector ; return address needs to be saved

°

Interrupt vector table contains addresses of all service routines

. OS is an interrupt- driven program

. state of CPU saved by OS by storing registers and PC onto stack

° Type of interrupt
- polling for device (1/0)
- vectored interrupt system aimer)

• Action to be taken for each interrupt determined by code
segment

completion of task

!

fetoerage structure
° hierarchy of memory

° RAM : volatile - main memory , directly accessible by CPU

- implemented with semiconductor technology
- DRAM

- info : charge on capacitor
- frequent charging required

° ROM
,
EEPROMy mobile phones : factory installed programs

° Von Neumann model : fetch
,
decode

,
execute cycles

control unit Aw

decode execute

✓

^

RAM cstore)
fetch

<

. secondary memory - nonvolatile

° Hard disk
- disk surface : tracks

,
sectors

- disk controller : interaction

r

• SSD - solid state disk

- faster
speed- flash memory size

o

caching
- level 1 and level 2

- faster storage for frequent
access

u

• Device driver
- interface b/w controller and

kernel

caching
. information copied from slower to faster

, temporarily

yo structure

° After 1/0 starts control returns to user program only after
completion of yo

- CPU idles until next interrupt given (wait instruction)

- No simultaneous yo processing can occur

° After yo starts , control returns to user program without

waiting for yo completion

-

system call : request to OS to allow user to wait for 1/0

completion input-output
T

- Device status table : entries for each of the 1/0 devices Hype,
address

,
state)

- OS indexes into 1/0 device table (check if busy / idle , assign

program if idle)

Direct Memory Access Structure

• used for high speed 1/0 devices (close to memory speeds)

• device controller transfers data from device directly to main

memory without CPU intervention

• only one interrupt generated per block (instead of one

interrupt per byte)

computer Architecture

way hardware components are connected together to form computer system

computer organisation
structure and behaviour of computer system as seen by the user

computer system Architecture

• single general purpose processor

• special purpose processors : disk controller, keyboard Cdevice specific) ,
graphics controller - run limited no . of instructions

• managed by OS

• eg: disk control microprocessor - receives sequence requests from CPU
,

implements queue and scheduling algorithm , relieves main CPU

Multiprocessor system

• parallel systems , tightly- coupled systems (multiple processors)

• advantages
- increased throughput
-

economy of scale cheaper than n single processor systems
- increased reliability tolerant systems

1. Asymmetric multiprocessing
each processor assigned a specific task lboss - subordinate)

2. Symmetric multiprocessing
each processor performs all tasks

Symmetric multiprocessor architecture

cat /proc/cpuinfo | more

DUAL CORE DESIGN

• Multi -chip and multicore

• systems containing all chips ; chassis containing multiple separate
systems

° Command C Linux)

Blade servers

0 multiple processor boards , 1/0 boards , networking boards on same
chassis

• board boots independently and runs its own 0s

• some blade- server boards are multiprocessor ; multiple independent

multiprocessor systems

Clustered systems

• Multiples systems working together cover a network)

• Shares storage via storaage - area network CSAN)

• High - availability service which survives failures
→
if failure , this

-

Asymmetric clustering : one machine in hot standby mode
machine takes
over

-

symmetric clustering: multiple nodes running apps monitoring each

other

• Some clusters are for high performance computing CHPC)

- apps must be written to use parallisation

• Some have distributed lock manager CDLM) to avoid conflicts over

shared data

clustered system

SAN allows many
systems to attach to

a pool of storage

Os structure - Multiprogramming
•

Multiprogramming Cbatch system) needed for efficiency

• single user cannot keep CPU and 110 devices busy at all
times

°

Organises jobs CCPU and data) so that CPU always has one

job to execute

• Subset of total jobs kept in memory

• One job selected and executed via job scheduling

• when it has to wait (for yo , etc) , OS switches to another job

° Reduce CPU idling

OS structure - Multitasking

• Timesharing (multitasking)

° CPU switches jobs so frequently that users can interact with each

job while it is running (interactive computing)

• Response time Cl second

- Each user has at least one program executing in memory

a CPU scheduling if several jobs to run at same time

• swapping moves processes in and out of memory

• Virtual memory : execution of processes not completely in memory

Cpu

user 3
user l user 2

Interrupt Driven

° Hardware interrupt by one of the devices

• Software interrupt cexeption or trap)
- software error (divideby O)
- request for OS service
- infinite loops, processes modifying OS et

Dual Mode and Multimode Operation

• User mode and kernel mode - dual mode

• Mode bit provided by hardware
-

distinguish
- privileged : only kernel mode instructions
- system call changes mode to kernel, return resets it

• multi-mode support by CPUs : VM Manager mode for guest VMs

timer

• interrupt computer after specified period

• variable timer implemented by fixed rate clock and counter

•

every clock tick , counter decrements

• interrupt occurs when counter reaches 0; prevents prog from running
for too long

Kemal Data Structures

(a) Array
• each element can be accessed directly
• main memory
• multiple bytes → no

. of bytes
• items with varying size ?

(b) Linked list

• SLL

• DLL

• CLL

• advantages :
-

varying size
- easy insertion /deletion

• disadvantages
- retrieval : 0cm for size n

- kernel algorithms
- stacks and queues

(c) Stack
• LIFO

• OS : stack of function calls
• params , local vars , return address pushed onto stack

• return from function call pops items from stack

(d) Queue

• FIFO

• task scheduling CPU

• printer print jobs

(e) Trees

° BST

- search : 01h)

• Balanced BST

- search :O Clog n)
- Linux for CPU scheduling - next task
- red-black trees

° Stat (filename > → YO block

Unix command

-

(f) Hash Functions and Maps
• implement hash map
• key: value pairs
• constant search time

(g) Bitmap
• string of n binary digits representing status of n items

• availability of each resource : 0 or I

- 0 : available

- 1 : not available

•

eg: bitmap 001011101

0,1 , 3,7 available

2) 4
,5,6 unavailable

Computing Environments
• where task is being performed

1. Traditional
• stand alone general purpose machine
• blurred - internet

• portals provide web access

•

eg: company servers

2. Mobile
• handheld smartphones , tablets
• GPS

, gyroscope
• AR

• IEEE 802-11 wireless
,
cellular data network

3. Distributed computing
• collection of separate computers
• TCP/IP
- LAN

- WAN

- MAN Metropolitan
- PAN Personal - BT

• Network 05

4. Client-server

• servers respond to client requests
- compute server system
- file server system

5. Peer-to-peer
• P2P : no client and servers

- peer can act as client
,
server or both

- nodes registered with central lookup table

- discovery protocol : requests and responses
• Skype (VoIP) , Napster , BitTorrent

6. Virtualisatin

• host 0s run guest OS as application

• emulation - source CPU diff from target CPU leg : PowerPC to
Intel ✗ 86 - Rosetta) not compiled to native code; interpretation

• virtualisatin : OS natively compiled for CPU running guest oses

also natively compiled

• VMM- virtual machine manager

• JVM - bytecode generated is not hardware - specific

(a) No virtual machine (b) Virtual machine

7. Cloud Computing
•

computing, storage , apps as service across a network

•

logical extension of virtualisatin
- Amazon Elastic Cloud CEC2) has 1000s of servers

,
millions of

VMs

• Public cloud : via internet for anyone willing to pay

• Private cloud: run by a company for its own use

• Hybrid cloud : both public and private components

• Services

- Saas : Software as a service leg: word processor)

- Paas : Platform as a service leg
: database server - software stack)

- Iaas : Infrastructure as a service leg: storage available for backup)

° Cloud computing environments composed of traditional oses, vmms,
cloud management tools
- load balancers spread traffic across apps (servers)

8. Real -Time Embedded Systems
• most prevalent form of computers
- real-time 0s

° special computing environments
- some 0s

,
some no OS

• real-time OS : well- defined time constraints

- soft real - time systems (do not hamper results with small

delay)
- hard real-time systems (hamper results with small delay)

services
• OS provides environment for execution of programs and services to

programs and users

• OS services helpful to user :

D User Interface

CLI
,
GUI

,
Batch Ceg: shell scripts in Linux)

2) Program Execution

system loads program into memory and execute , terminate

Cnormally or abnormally) errors
, exceptions , abort , interrupt

↳ exit(1)→ failure cases

3) 1/0 Operations
a running program may require yo Cfile or device)

View of OS services

0s Design and Implementation

• policy : what to do
mechanism : how to do

• separation of policy from mechanism important, allows Max

flexibility

• creative task

• implementation of oses :
- earlier, assembly
- then system programming tangs

- Algol, PHI
- now C

, Ctt

° mix of languages
- lowest levels in assembly
- main body in C

- system programs in 4C-1-1 , scripting languages like PERL , Python,
shell scripts

• High level language easier to port to other hardware ,
but slower

• Emulation : run 0s on non-native hardware

Process concepts

• OS executes various programs
- batch system - jobs
- time - shared systems- user programs or tasks

•

process : program in execution
, sequential

• segments/ parts grow
- code or text section

- current activity - PC , processor registers
- stack - function parameters, grow

local variables
,
return address

- data section - global variables
- heap - dynamically allocated memory

•

program : passive entity; file stored on disk

process : active ; when executable file loaded onto memory

o execution of program via CLI
,
GUI etc

e one program can be several processes (multiple users executing same

program)

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3
 4 int x;
 5 int y = 15;
 6
 7 int main(int argc, char *argv[]) {
 8 int *values;
 9 int i;
 10
 11 values = (int *) malloc(sizeof(int)*5);
 12
 13 for (int i = 0; i < 5; ++i) {
 14 values[i] = i;
 15 }
 16 return 0;
 17 }

➜ Desktop size a.out
__TEXT __DATA __OBJC others dec hex
16384 16384 0 4295000064 4295032832 100010000

} local variables

segdmaetnat f

size of a program

f
in Linux

,
bss - static

Process States

° New : process being created
•

Running: instructions being executed
° Waiting: process waiting for event
• Ready: waiting to be assigned to a processor
• Terminated : process finished execution

. Ctrl-z : shunted into background ; suspended
Ctrl - e : abort

suspend into bg Abort

process O→ abort
"°. ↳

O→ bring to foreground

Process State Diagram

Ctrl -c
Ctrl- z completed

assigns to CPU

Process control Block (PCB)

Every process has a PCB ; info associated with each process task

control block)

° Process state : running , waiting etc CPID)

• Pc : next instruction

• CPU registers : contents of process-centric registers

• memory management information : memory allocated to the

process

°

Accounting information : CPU used , clock time elapsed since start
,

time limits

° yo status information : 110 devices allocated to process, list of open files

← linux : ps
- aux works

O

CPU switch from process to process

•

multiprogramming
• context switching

moved to ready
queue

assign to cpu

Process scheduling

° Process scheduler selects among available processes

• maintains scheduling queues of processes emigrate among queues)
- Job queue : set of all processes in system
-

Ready queue: set of processes in memory , ready and waiting to execute
- Device queues : set of processes waiting for yo devices

Ready Queue Ee Various Yo Device Queues

linked list

of PCBs

Process Scheduling

←
device queue

round

✓ robin

Schedulers

° Short -term schedulers (CPU schedulers) : selects next process to be

executed and assigns it to CPU (from ready queue)
- invoked frequently Cms)
- sometimes the only scheduler

• Long- term scheduler (job scheduler) : selects which process should be

brought to ready queue (from job queue) pg 28
- invoked infrequently Cs → min)

- degree of multiprogramming

° Medium - term scheduler : if degree of multiprogramming needs to
decrease

- remove process from memory swap out
- store on disk (backing store)
-

bring into memory from disk to continue swap in
-

swapping

so

a

° Processes

1/0 bound : more time on 110 , less on CPU

CPU bound : more time on CPU (long , infrequent CPU bursts)

°

Long-term scheduler : good process mix

context switching
• CPU switching between processes must save old process state and

load saved state while switching back to it

• context : represented in PCB

• More time spent on context switching , more time wasted ;

context switching time is an overhead ; complex 0s and PCB
means longer context switch

• Time depends on hardware availability

OPERATIONS ON PROCESSES

° creation - create process : windows , forKC) : linux

° termination

creation

•

parents create children C.tree)

• PID : identifier
• resource sharing
- parents 4 children share all

-

children share subset of parent's
- no sharing

• execution

- simultaneous

- sequential

TREE OF PROCESSES IN LINUX

NO

interrupt
daemon :

↳ cannot be
controlled by
terminal

Bourne - Again

y
Shell

login shell
(bash

,
zsh etc)

daemon

od

bash zsh

forkC) : Process creation

° forkC) system call : creates new process

←
6 variations

° execC) system call : used after forKC) to replace process
'

memory
space with new program

termination

• exit c) system call : asks OS to delete process
- waitc) returns status data from child to parent
- resources deallocated by OS

• parent can terminate execution of children using abortC)

- child exceeds allocated resources

- task no longer required
- parent is terminating (exiting

• Some Oses : if parent is terminating, all its children must

terminate

- cascading termination (children → grandchildren)

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

int main() {

 int pid;

 pid = fork();

 if (pid < 0) {

 /*

 1. Too many processes in memory

 2. Max children processes

 */

 printf("Forking error\n");

 exit(1);

 }

 else if (pid == 0) {

 /* Child process */

 printf("Child process\n");

 }

 else {

 /*

 Wait for child process to finish executing

 NULL - irrespective of status of child process

 */

 wait(NULL);

 /* Parent process - ID of child process */

 printf("Parent process\n");

 }

 return 0;

}

https://www.geeksforgeeks.org/fork-system-call/

• Waite) : parent waits for children to execute and terminate

f- returns status info and pid
c- memorylinux : include

csys/wait .h> Pid = wait(& status ; location

• zombie : no parent waiting (parent sleeping; did not get status)

• orphan : parent terminated without waitC) (child still executing)

Terminal : with waitC)

without wait C)

For more - man fork

man wait

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

int main() {

 int pid;

 pid = fork();

 if (pid < 0) {

 /*

 1. Too many processes in memory

 2. Max children processes

 */

 printf("Forking error\n");

 exit(1);

 }

 else if (pid == 0) {

 /* Child process */

 printf("Child process\n");

 execl("/bin/ls", "ls", NULL);

 }

 else {

 /*

 Wait for child process to finish executing

 NULL - irrespective of status of child process

 */

 wait(NULL);

 /* Parent process - ID of child process */

 printf("Parent process\n");

 }

 return 0;

}

execl("/bin/ls", "ls", "-l", NULL);

https://www.geeksforgeeks.org/exec-family-of-functions-in-c/

https://www.geeksforgeeks.org/wait-system-call-c/
exec commands

Terminal

2

anything after
is not run

Arguments
yargumfontsommand

CPU SCHEDULING

• From RQ to CPU : order of assignment , execution

• Single core system : only one process at a time . Once CPU is free
,

next process

•

Multiprogramming: maximise CPU utilisation and minimise idling

• several processes in memory at once

• When one process is waiting , OS takes CPU away from it and

assigns new process ✗ yo

° Multi - core : process of keeping CPU busy extended to all cores

Alternate sequence of YO and CPU Bursts

maximise CPU utilisation

CPU Burst Time Histogram

•

multiple short CPU bursts

• few long CPU bursts

CPU scheduler

• Short - term scheduler
• Queue : FIFO

, queue, tree , unordered linked list
o records : PCB

Preemptive and Non - Preemptive scheduling

• When a process
1. switches from running to waiting - Yo , event
2. switches from running to ready - interrupt
3. switches from waiting to ready
4. terminates

• scheduling under 1 and 4 : non-preemptive - allowed to run to
completion with CPU

, switching to wait state

• others : preemptive - process asked to release CPU involuntarily
- access to shared data

} race- kernel mode

- interrupts during crucial og tasks

condition

• Preemptive scheduling used by most oses

• mutex locks : prevent race conditions while accessing shared

data from kernel data structures

DISPATCHER

• Gives control of CPU to process selected by short-term

scheduler

- context switching
- switching to user mode

- jumping to restart

° Dispatch latency : time taken by dispatcher to stop me process
and start another

scheduling criteria

• CPU Utilisation : -40.1 . to -90.1. (Max)

° Throughput : no . of processes executed in unit time cmax)
wait -1
CPU

• Turnaround time : time taken to execute particular process burst

Cmin) - performance metric

• Waiting time : time for which a process waits in ready queue
1min)

° Response time : amount of time it takes from when request
submitted

,
until first response (min)

Jchedulingy ALGORITHMS

1. First Come , First serve CFCFS)

- executed in order of arrival

tasks after long
tasks

• if arrival order :p, ,p, , p,
#

""°Y effect : shorter

Gantt chart

t

•

waiting time for P
,
= 0

,
t -a of P

,
--24

waiting time for Pa --24 ,
t -a of 13=27

waiting time for 13--27 ,
t -a of Pz --30

•

average waiting time = -0+24-127 = 17

3

•

average turnaround time = 27

• if arrival order Pz , Pz , P
,

• tw P
,
= 6

, Pz = 0
,
Pz =3

,
average tw =3

° tta 17=30
,
P
,
=3
,

P
,
= 6
, average tta

= 13

2
.
Shortest Job First CSJF) Scheduling

°

process with shorter CPU burst time executed first

• optimal - minimum average waiting time

e knowing the length of next process - difficulty

° Gantt chart for SJF

°

average wait time = 0+3+91-16 = 7
4

Predicting length of Next CPU Burst

°

only an estimate (should be similar to previous one)

. using length of previous bursts using exponential

averaging actual length
←

Tnt , = a th t (t -a) Tn d : 0.5 usually
T T

predicted Ed El

Q : calculate exponential averaging with T, = 10,2=0.5 and the

algorithm is SJF with previous runs as 8,7 , 4,16

Initially 71--10 and 2=0.5 and run times 8
,
7
,
4
,
16

Possible order : 4
,
7
,
8
,
16

Tnt; ✗ tn -14 -d) Tn

72=0.5×4-1 0.5×10 = 7

Try = 0.5×7+0.5×7 = 7

Ty = 0.5×8-10.5×7 = 7.5

75 = 0.5×161-0.5×7.5 = 11.75

T
,
= 10

Ti 7

Tz : 7

Ty : 7.5
75--11.75

PREDICTION

EFFECT of L

o L = O : Tnt , = In

previous round does not effect

• 2=1 : Tnt , = tn

only previous CPU burst counts

a simplified exponential averaging

Q :

what is average turnaround time with

d) FCFS

Lii) SJF

(i) P , Pz Pz

O 8 12 13

average turnaround
= 8-112-112 = 11

3

(Ii) Ps Pz P
,

O 1 5 13

average turnaround = Its = 6.33

3

3 .
Shortest Remaining Time First CSRTF) scheduling

° preemptive version of STF

° arrival time taken into account (current time - arrival)

• preempt currently executing process if new process has

shorter burst time

wait 9 7 7

time 0 3 2

15 9

2 5

° Gantt chart

c- preempted

.

average waiting time = 9+01-15+2=6.5

4

turnaround time = exit time - arrival time

waiting time -- turnaround time - burst time

4. Priority scheduling
° priority defined by integer (smaller→ higher priority)

° preemptive (arrival time; shortest remaining time)
non-preemptive

° SJF is priority scheduling algorithm where priority is

inverse of CPU burst time

• Problem = starvation (never executed if priority very low)

° Solution = ageing (as time increases , priority increases)

Q : Non- preemptive priority queue Cno arrival)
.
Find avg wait

time .

K Ps P , Pz Py

O 1 6 16 18 19

average waiting= Otl -16 t 16-118 = 8-2

5

Q : Preemptive

Arrival Time

:
4

5

7

,
Plz Peg Pi Psi Pi B Py

'

7 12 16 18 19

average = (16-0-10) -113-2 - 1) + (18-4-2) -1119 -5-1) + (12-7-5)
wait time 5

= 3,1--6.2

Q :

Process Burst Time Arrival Time

P
,

10 O

P
,

20 2

Pz 30 6

P
, Pz Pz

O 10 30 60

i. O context switches

O :

wait time

13- O -9=4

5 - I - 4=0

22-2-9=11

Preemptive SJF = SRTF

Po P, Po Pu

O 1 5 13 22

average wait time =

is = 5

5
. Round Robin

• each process gets a small unit of CPU time (time quantum

q) usually 10 - looms

° after this time has elapsed , process is preempted and added

to the end of the ready queue

• if there are n processes in the ready queue and the time

quantum is q, then each process gets yn of the CPU time

in chunks
,
at most g units

°

no process waits more than Cn -Dq units

• timer interrupts every quantum to schedule next process

q should be ⇒° performance
context switch

-

q large → FIFO d time
-

q small
→ overhead too high (too many context switches)

Q : q
-

- 4

Gantt chart

° higher average turnaround than SJF , better response

• average waiting time -- do -4754-17 = 31=5-67

O: if q
-

- 2 for prev question

P
, Pz B P

, 13/4 P , P , P , P , P , P , P , P , P , P
,

Time Quantum and context switching

shorter q , more context switches

(burst)

(

Turnaround Time and Time Quantum

burst
← time

%
%
"
il

%
%
↳ FIFO

° Linux
,
Windows use RR scheduling

6 . Multilevel scheduling
e ready queue → 2 separate partitions
- foreground (interactive)
-

background (batch)

° process permanently in a given queue

• each queue : scheduling algorithm
- foreground : RR
- background : FCFS

run in background run in foreground

bring back to foreground

. scheduling done between queues
- fixed priority scheduling (starvation)
- time slices C -801 . fg)

7. Multilevel Feedback Queue Scheduling

•

process moves between various queues
- ageing

° multilevel feedback queue scheduler:
-

no . of queues
- each queue 's scheduling algorithm
-

method to determine when to upgrade a process
- method to determine when to demote a process
- method to determine which queue a process enters when it needs

service

• three queues - example
- Qo : RR- quantum 8ms

- Q , : RR
-

quantum 16ms

- Qz : FCFS

•

Scheduling
- new job enters Qo
- job receives 8ms

- if not completed , moved to Qi

- jobs receive additional 16ms
- if not complete , preempted and moved to Qz
- Oz is FCFS

MULTIPLE PROCESSOR SCHEDULING

°

Asymmetric scheduling : single master assigns processes to other

processor; only master has access to system data structures

(communicates with OS)

° Symmetric scheduling CSMP) : each processor has its own ready
queue and scheduling algorithm or all processes have common

ready queue

• Modern oses : Windows
,
Linux

,
MacOS support SMP

threads

private
ready
queue

symmetric multiprocessing csmp)

• each processor : own cache ; buffer
- buffer of cache populated with process data

- process migrates : cache flushed , new cache filled

core 1 core }- populated
cache] cache with P,
^ flushed n data

PI data in migrated
buffer

• Processor affinity : process has affinity for processor on which it is

currently running
- soft affinity: OS keeps process on same core (tries not

to migrate) but not guaranteed
- hard affinity: doesn't allow process to migrate between processors
- Linux : soft affinity
- sched - setaffinity C) system call - supports hard affinity

ACCESS to MEMORY

• Main memory architecture can affect processor affinity

/
on

chip

memory

°

Scheduling and memory placement algorithms work together

LOAD BALANCING

• SMP tasks (each CPU own task)

• Push migration : periodic task checks load on each CPU and pushes
overloaded CPU task to other CPU

° Pull migration : idle processors pull waiting task from busy processor

° Counteracts benefits of processor affinity

Multicore processors

° Multiple cores on single chip

° Faster
,
less power

• Multiple hardware threads

,
idling CPU

° Memory stall : request memory for data , takes time; another thread
can compute while previous thread is fetching from memory

c compute cycle m memory cycle
thread

> c M C M C M C M

]

time

thread .
c M C MJ C M C

threado
, c M C M C M C

]

time

Chip Multithreading
- CMT - each core assigned
multiple threads

° Intel : hyperthreading

° Quad - core system with 2 threads

per core : logically 8 cores to the OS

cat /proc/cpuinfo | more (page ID

O c- logical cores

O← cores

Multithreading

n
. .
coarse grained
• thread executed on processor until long- latency event such as

memory stall
° cost of switching is high
- state is saved

2. Fine grained
- cost lower

. finer level of granularity

Multithreaded multicore Processor

° two levels of scheduling

° OS decides which software thread runs on a logical CPU

° How each core decides which hardware thread to run on

physical core

Real-Time CPU scheduling
° embedded systems , real- time CPUs

D soft Real-Time systems
- no guarantee as to when task is scheduled

2) Hard Real - Time systems
° must be serviced by deadline

°

interrupt latency interrupt arrival to service

• dispatch latency switch CPUs

• conflict phase of dispatch latency

-

preemption of process

running in Kemal mode

- release by low priority
process of resources needed

by high priority

scheduling ALGORITHMS

1 . Priority - based Scheduling
. preemptive

. soft real- time, not hard

° CPU required at constant

intervals

P1 and P2 are 50 and 100, respectively—that
is, p1 = 50 and p2 = 100.
The processing times are t1 = 20 for P1 and
t2 = 35 for P2. The deadline for each
process requires that it complete its CPU
burst by the start of its next period.

o t : processing time
d : deadline

p : period

O Et E d Ep

• rate of periodic task -

- YP

2
. Rate Monotonic scheduling

° inverse of period : priority

Q :

CPU utilisation = ti p ,
-
- 50 Pa

-

- 100

Pi t
,
= 20 ta

-
- 35

171--21=0.4 172--35 = 0.35 total = 0.75
50 Too

case 1 : P2 priority higher than P1 (priority should be

based on period)

Pa P
, P, needs to

o 35 55 complete before 50

misses deadline

Case 2 : Pl priority higher than P2 missed deadlines

←
R , Pz

P
,

Pz P, Pz
n

P
,

O 20 50 70 85 / 100 120

idles

Q: consider processes with p , -50 , ti
-
- 25
, pz

-
- so

,
ta -- 35

PI misses deadline

←
misses deadline

Pa P , priority order
° 35 60 also wrong

• worst case utilisation of CPU for N processes = NC
24N
- I)

3 . Earliest Deadline First LEDF) Scheduling
°

priorities assigned dynamically according to deadlines

. earlier the deadline
, higher the priority

. soft real - time

pthread_attr_getsched_policy(pthread_attr_t *attr, int *policy)

pthread_attr_setsched_policy(pthread_attr_t *attr, int policy)

O: consider processes with p , = 50 , ti
-
- 25
, pz

-
- so

,
ta -- 35

4. Proportional share scheduling
° T shares allocated among all processes

• each app : NIT of processor time CN shares)

•

eg: assume total
F- 100 shares and 3 processes A , B, C

A → 50

B → 15 85 shares
not more

than 15 more

c → 20 can be allocated

5 . POSIX Real-Time scheduling

° POSIX . 1b standard

° API provides functions for managing threads in real
- time

• Scheduling classes

1
. SCHED- FIFO : threads scheduled using FCFS with queue , no

time -slicing for equal priority
2
. SCHED- RR : similar to FIFO but time -slicing occurs

g
get posix scheduling algorithm

t set

cat /proc/1/limits$

)
°→

priority Oteal time
priority scheduling

OT
vf
twitchingpriority

° Linux machines : completely Fair scheduler CCFS)
- check slides

- see : red-black trees

- Windows machine

- check slides

inter- process communication

. processes : independent or cooperating"
do not affect t
each other affect each

other
°

cooperating processes
- information sharing
- computation speedup : divide task
- modularity : cores

, dependency
- convenience

• communication models

message passing shared process

✓
common

shared

segment

(buffer)

Producer - consumer Model

° producer : process writes to buffer

° consumer : process reads from buffer

#define BUFFER_SIZE 10

typedef struct {
 ...
} item;

item buffer[BUFFER_SIZE];

int in = 0;
int out = 0;

I . Unbounded buffer

. Producer can keep producing data and writing into
buffer

° Consumer cannot read from an empty buffer ; must
wait

° no practical limit on buffer

2
. Bounded buffer

° Producer waits when buffer full

• consumer waits when buffer empty

implemented as circular array

0 I 2 3 4 5 6 7 8 9

printout empty : in -- out

item next_produced;

while (true) {

 /* produce an item in next_produced */

 while (((in + 1) % BUFFER_SIZE) == out); /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

}

item next_consumed;

while (true) {

 while (in == out); /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 /* consume the item in next_consumed */

}

O l 2 3 4 5 6 7 8 9

I 2 3 45 6 7 89 full queue : one is wasted

T T
in

out

full :(in -113% BUFFER- SIZE -

- out

Producer

consumer

fhaled MEMORY

° two or more processes have access to same memory

> fastest form of IPC

. synchronising access ceg: client q server)

. semaphores : shared memory access

message passing

°

processes communicate and synchronise

• IPC : send (message) , receive (message)

° if P g Q wish to communicate
, they must

1. establish communication link

2. exchange messages via send I receive

• link between messages
- size

,
direction etc .

' physical link : shared memory , hardware bus
,
network

° logical link : direct/ indirect, synclasync , automatic explicit
buffering

Defect COMMUNICATION

• processes named explicitly

. send CP
, message)

receiveco , message)

° automatic links
,
one link per pair

° usually bidirectional

unique ID

Indirect COMMUNICATION
I

• messages sent (received to/from maiboxes (ports)

•

only if processes share a mailbox , they can communicate

. each pair may
have several links and each link can

connect several process

• link : Uni or bidirectional

• create new port /mailbox

° issues : P
,
sends to shared mailbox with Rz , Rz ; who

gets message?

Blocking Ee Non-Blocking

Blocking
°

Synchronous
°

blocking send : sender blocked until message received
°

blocking receive : receiver blocked until message sent

Non-blocking
• asynchronous
• non -blocking send : the sender sends the message , continue
° non -blocking receive : the receiver receives a null or valid

message

if both sender and receiver are blocking, rendezvous

between sender and receiver

Buffering
•

queues of messages attached to link ; temporary queue for

messages
message system with
no buffering. queues : y

l . zero capacity : no queue; sender waits for receiver; rendezvous
2 . bounded capacity : finite length of n messages , sender waits if
full automatic buffering

3 . unbounded capacity : infinite length ; sender never waits

Pipes

° half - duplex IPC parent-

p
child
,
no relationship

- ordinary (unnamed) pipes and named pipes

Ordinary Pipes

° producer- consumer style c.write- read)

O - stain

fd[D O) fdco] I - Stdout

↳ I 2- stderr
write read

• half - duplex (unidirectional)

. for two -way , two pipes

° Linux : pipe , Windows : anonymous pipes

Named Pipes

° More powerful than ordinary pipes

° bidirectional
,
no parent-child relationship

- several processes same pipe

° two pipes for two -way

° FIFO : once retrieved
,
data removed

° UNIX :

- mkfifoc)
, open C) , read C)

,
write C)

,
closec)

- byte - oriented
- half - duplex
-

same machine

° Windows
- Create NamedPipe ,

connectNamed Pipec)
,
ReadFila)

,

writeFilet)
, Disconnect NamedPipe l)

- full duplex
- same or different machine

- byte or message oriented

O
←read

end
T
write [pipe - pipelineend operator

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main() {

 int fd[2];

 char buf[5];

 pipe(fd);

 write(fd[1], "hello", 5);

 read(fd[0], buf, 5);

 write(1, buf, 5);

 printf("\n");

 return 0;

}

Search for Pattern
'for:L.

I
pipe

Named pipe - fifo

of
fifo file

%
pipe

↳
normal

manual entry L2) - system call

manual entry 4) - command

pipe - c

Ubuntu

MacOS

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main() {

 int fd[2];

 char buf[12];

 int pid;

 pipe(fd);

 pid = fork();

 if (pid < 0) {

 printf("error\n");

 exit(1);

 }

 else if (pid == 0) {

 write(fd[1], "I am child\n", 12);

 }

 else {

 read(fd[0], buf, 12);

 write(1, buf, 12);

 }

 return 0;

}

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main() {

 int fd[2], fd1[2];

 char buf[12], buf1[7];

 int pid;

 pipe(fd);

 pipe(fd1);

 pid = fork();

 if (pid < 0) {

 printf("error\n");

 exit(1);

 }

 else if (pid == 0) {

 close(fd[0]);

 write(fd[1], "I am child\n", 12);

 read(fd1[0], buf1, 7);

 write(1, buf1, 7);

 }

 else {

 close(fd[1]);

 read(fd[0], buf, 12);

 write(fd1[1], "parent\n", 7);

 write(1, buf, 12);

 }

 return 0;

}

One- way communication

output

Two -way communication

Output

